Alpha-Melanocyte Stimulating Hormone Protects against Cytokine-Induced Barrier Damage in Caco-2 Intestinal Epithelial Monolayers
نویسندگان
چکیده
Alpha-melanocyte-stimulating hormone (α-MSH) is a potent anti-inflammatory peptide with cytoprotective effect in various tissues. The present investigation demonstrates the ability of α-MSH to interact with intestinal epithelial cell monolayers and mitigate inflammatory processes of the epithelial barrier. The protective effect of α-MSH was studied on Caco-2 human intestinal epithelial monolayers, which were disrupted by exposure to tumor necrosis factor-α and interleukin-1β. The barrier integrity was assessed by measuring transepithelial electric resistance (TEER) and permeability for marker molecules. Caco-2 monolayers were evaluated by immunohistochemistry for expression of melanocortin-1 receptor and tight junction proteins ZO-1 and claudin-4. The activation of nuclear factor kappa beta (NF-κB) was detected by fluorescence microscopy and inflammatory cytokine expression was assessed by flow cytometric bead array cytokine assay. Exposure of Caco-2 monolayers to proinflammatory cytokines lowered TEER and increased permeability for fluorescein and albumin, which was accompanied by changes in ZO-1 and claudin-4 immunostaining. α-MSH was able to prevent inflammation-associated decrease of TEER in a dose-dependent manner and reduce the increased permeability for paracellular marker fluorescein. Further immunohistochemistry analysis revealed proinflammatory cytokine induced translocation of the NF-κB p65 subunit into Caco-2 cell nuclei, which was inhibited by α-MSH. As a result the IL-6 and IL-8 production of Caco-2 monolayers were also decreased with different patterns by the addition of α-MSH to the culture medium. In conclusion, Caco-2 cells showed a positive immunostaining for melanocortin-1 receptor and α-MSH protected Caco-2 cells against inflammatory barrier dysfunction and inflammatory activation induced by tumor necrosis factor-α and interleukin-1β cytokines.
منابع مشابه
Metformin protects against intestinal barrier dysfunction via AMPKα1‐dependent inhibition of JNK signalling activation
Disruption of the intestinal epithelial barrier, that involves the activation of C-Jun N-terminal kinase (JNK), contributes to initiate and accelerate inflammation in inflammatory bowel disease. Metformin has unexpected beneficial effects other than glucose-lowering effects. Here, we provided evidence that metformin can protect against intestinal barrier dysfunction in colitis. We showed that m...
متن کاملBifidobacteria Prevent Tunicamycin-Induced Endoplasmic Reticulum Stress and Subsequent Barrier Disruption in Human Intestinal Epithelial Caco-2 Monolayers
Endoplasmic reticulum (ER) stress is caused by accumulation of unfolded and misfolded proteins in the ER, thereby compromising its vital cellular functions in protein production and secretion. Genome wide association studies in humans as well as experimental animal models linked ER stress in intestinal epithelial cells (IECs) with intestinal disorders including inflammatory bowel diseases. Howe...
متن کاملPhospholipase C-g inhibition prevents EGF protection of intestinal cytoskeleton and barrier against oxidants
Banan, A., J. Z. Fields, Y. Zhang, and A. Keshavarzian. Phospholipase C-g inhibition prevents EGF protection of intestinal cytoskeleton and barrier against oxidants. Am J Physiol Gastrointest Liver Physiol 281: G412–G423, 2001.— Loss of intestinal barrier integrity is associated with oxidative inflammatory GI disorders including inflammatory bowel disease. Using monolayers of human intestinal e...
متن کاملMolecular mechanism of tumor necrosis factor-alpha modulation of intestinal epithelial tight junction barrier.
A TNF-alpha-induced increase in intestinal epithelial tight junction (TJ) permeability has been proposed to be an important proinflammatory mechanism contributing to intestinal inflammation in Crohn's disease and other inflammatory conditions. Previous studies from our laboratory suggested that the TNF-alpha-induced increase in intestinal TJ permeability was mediated by an increase in myosin li...
متن کاملAGI Apr. 39/4
Ma, Thomas Y., Don Nguyen, Vuong Bui, Hanh Nguyen, and Neil Hoa. Ethanol modulation of intestinal epithelial tight junction barrier. Am. J. Physiol. 276 (Gastrointest. Liver Physiol. 39): G965–G974, 1999.—Previous studies have shown that high concentrations of ethanol ($40%) cause functional damage of the gastrointestinal epithelial barrier by direct cytotoxic effect on the epithelial cells. Th...
متن کامل